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Transformation of Sib-Pair Values for the Haseman-Elston Method
Daolong Wang,1 Shili Lin,2 Rong Cheng,1 Xin Gao,1 and Fred A. Wright1
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The squared sib-pair phenotype difference (SQD) has been used as a dependent variable in the Haseman-Elston
(H-E) regression quantitative-trait locus (QTL) linkage method, but it has been shown that the SQD does not make
full use of linkage information. In this study, we examine the efficiency of SQD in H-E regression compared to
other proposed functions of the sib-pair phenotypes. A new function of sib-pair phenotypes, the product of pair
values corrected with family mean (PCF), is shown to have desirable properties in many realistic situations. Con-
sistent results were obtained using a combination of large-sample analytic approximations, simulation, and analyses
of quantitative-trait data from Genetic Analysis Workshop 10. The advantages of PCF are further improved in the
presence of family-specific effects arising from environmental factors or when additional QTLs influence the trait.
All of the phenotype functions are incorporated in our new, freely available linkage-mapping program MULTIGENE
1.0 for the PC environment.

Introduction

Haseman and Elston (H-E) (1972) proposed a simple
regression method for detecting linkage between a quan-
titative trait locus (QTL) and genetic markers. This
method uses the squared difference (SQD) of sib-pair
phenotypes as the dependent variable and the proportion
of alleles shared identical by descent (IBD) by the sibs
at the marker as an independent variable. A significant
linear-regression result is evidence for linkage. Many
other statistical approaches to mapping QTLs have been
developed, but the H-E method is attractive in its sim-
plicity and has been used as a standard for comparison
(e.g., Amos et al. 1989; Cardon and Fulker 1994; Fulker
and Cardon 1994; Kruglyak and Lander 1995; Olson
1995; Risch and Zhang 1995; Blangero and Almasy
1997; Williams and Blangero 1999).

One of the drawbacks of the H-E method is that the
SQD discards information that may be important for
detection of linkage (Amos 1994; Fulker and Cherny
1996; Wright 1997; Drigalenko 1998). Methods have
been proposed to make fuller use of the information
from the data by means of the bivariate sibling phe-
notype distributions, including variance-component
methods (e.g., Amos 1994; Fulker and Cherny 1996)
and a likelihood method applicable to collections of
truly independent sib pairs (Wright 1997). Additional
work has explored the use, as dependent variables, of
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other functions of the pair values, which we term “trans-
formation schemes” in this study. Drigalenko (1998)
suggested the use of the product of pair values, em-
phasizing the usefulness of sib-pair trait sums (Wright
1997). Elston et al. (2000) examined, by simulation, the
properties of the product of mean-corrected pair values
(using the population grand mean) and showed that this
transformation was more powerful than SQD in many
situations. Recently, Xu et al. (2000) suggested the use
of an appropriately chosen weighted average of SQD
and the mean-corrected squared sum of pair values to
increase the power for detecting QTLs.

This study evaluates several existing transformation
schemes reported in the literature, as well as a new
proposed scheme. A common theme throughout this
study is that the ability to detect linkage arises from the
variation in the expected value of the dependent variable
as a function of IBD status. This is often referred to as
“explained variance,” in regression analysis, or “be-
tween-group variance,” in analysis of variance, with
IBD status as the independent variable. The power to
detect linkage depends on the residual ratio—that is,
the ratio of residual (i.e., unexplained) variation to total
variation in the dependent variable. Here, “residual var-
iation” includes all sources of variation in the dependent
variable that remain after the regression model is fitted,
including genetic variability at the locus that is not fully
captured by consideration of IBD status alone. On the
basis of this criterion, our proposed transformation
scheme, the product of pair values corrected with family
mean, was found to have the smallest residual ratio
among the four schemes studied in many situations that
we deem to be realistic. We use the Genetic Analysis
Workshop 10 (GAW10) nuclear-family data (problem
2A) to illustrate the analytic results and to study further
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the relative performances of these transformation
schemes. In addition, we describe via simulation how
family-specific effects and the presence of additional
QTLs also will tend to favor the proposed transfor-
mation over other schemes.

Four Transformation Schemes of Sib-Pair Values

Suppose we have M nuclear families in the data, and
each family has ) siblings. Let be then (i p 1, … ,M Zi ij

phenotypic value of an individual in nu-j(j p 1, … ,n )i
clear family i. All sibling pairs will be considered in the
family, and we use and to denote the phenotypez z1k 2k

values of the two siblings in sib pair k.

SQD

The traditional SQD of pair values is computed as

2SQD p (z � z ) .k 1k 2k

Product of Pair Values without Correction (PRO)

Noting drawbacks in the use of SQD, Drigalenko
(1998) suggested a dependent variable consisting of the
product of sib-pair phenotypes. The product appearing
in Drigalenko (1998) is not mean-corrected—that is,

PRO p z z ,k 1k 2k

and it is shown that this product is (up to a constant
factor) equivalent to the difference of SQD and the
squared sum, or 1 2 2[(z � z ) � (z � z ) ] p �1k 2k 1k 2k2

. We find it instructive to contrast this approach2z z1k 2k

with other approaches described here, two of which rely
on forms of mean correction. Using the product can
capture some of the extra information that is lost when
using the sib-pair difference. However, the sensitivity of
PRO to the grand mean makes it generally less efficient
than other approaches. Appendix A examines transfor-
mations of the form , for which PRO is(z � c)(z � c)1k 2k

a special case with . It is shown that among choicesc p 0
of constant c, the residual ratio is minimized for c p
, where m is the overall phenotype grand mean. Them

resulting alternative transformation (z � m)(z � m)1k 2k

leads directly to the approach adopted by Elston et al.
(2000), described below.

Product of Pair Values Corrected with Grand Mean
(PCG)

Elston et al. (2000) suggested the use of the product
of pair values corrected by the estimated phenotype
grand mean, or

ˆ ˆPCG p (z � m)(z � m) ,k 1k 2k

where and . This approach ex-m̂ p � � Z /N N p � ni j ij i i

plicitly estimates the covariances of and for eachz z1k 2k

IBD value. This appears to be sensible, as the covariance
is the parameter in the joint distribution of that{z z }1k, 2k

varies with IBD status.

Product of Pair Values Corrected with Family Mean
(PCF)

We consider a new transformation scheme that corrects
each phenotypic value by the corresponding family mean
instead of by the grand mean. For a given family i, the
family mean, , is the average of all siblings in the family:m̂i

1
m̂ p Z .�i ijn ji

The PCF value for each sib pair in the family is, then,

ˆ ˆPCF p (z � m )(z � m )k 1k i 2k i

Note that, when a family contains only two siblings,
PCF is equivalent to SQD, since .PCF p �SQD /4k k

Theoretical Aspects of the Transformation Schemes

To explore the theoretical features of the transformation
schemes, we follow the assumptions of Haseman and
Elston (1972). Specifically, we assume that the quanti-
tative trait of interest is influenced by a single, diallelic
QTL with alleles B and b. The allelic frequencies are
denoted as p for B and q for b ( ). The QTLp � q p 1
has only an additive genetic effect, denoted as a, on the
trait. The genetic contribution to phenotype for individ-
ual j in family i can be written as

m � a if the genotype is BB
g p m if the genotype is Bb .ij {m � a if the genotype is bb.

The phenotype value of an individual can be written as
, where random residuals are indepen-Z p g � � eij ij ij ij

dent and identically distributed . We assume2N(0,j )�

Hardy-Weinberg equilibrium and linkage equilibrium.
For simplicity in our derivations, we further assume that
all nuclear families in the data are independent and that
all families have the same sibship size, n. This last as-
sumption provides for an appropriate analytic compar-
ison of the transformation schemes but is not necessary
for actual mapping applications.
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Table 1

Regression Models for Various Transformation Schemes

Transformation
Scheme b0 b1 x0 x1 x2

SQD 22j�
2ja 2 1 0

PCF 1 2� j�n
2ja

1 1 1
2� � �2 2n n

1�2n
1 3 1

2� �2 2n n

PCG 1 2� j�N
2ja

1�N
1 2 1

2� �2 N N
3 2

21 � �N N

PRO 2 2m � 2(p � q)ma � a 2ja �2 3�2 �1

Regression Models

All of the conditional expectations of the dependent
variable on the independent variable can be written in
a general regression form:

E[y ] p b � b x ,k(p) 0 1 p

where is the dependent variable (SQDk, PROk, PCGk,yk(p)

or PCFk, as applicable) for the kth sib pair sharing p

alleles, and is a function of . The regression modelsx pp

for the transformation schemes were derived and are
presented in table 1 (see Appendix B for sketch of der-
ivations; full derivations are available at the Statistical
Genetics Laboratory Web site). The regression coefficient

can be shown to be , the additive genetic2 2b j p 2pqa1 a

variance of the QTL, for each transformation scheme
(Haseman and Elston 1972; Drigalenko 1998; Elston et
al. 2000). The intercept and , however, differ amongb x0 p

the schemes. PCG has terms of order (1/N), reflecting
slight negative correlations induced during correction by
the estimated grand mean (noted by Elston et al. 2000).
From these expressions, it can be derived that SQD and
PCF do indeed coincide for . Also, aside from then p 2
small-order terms, it can be shown that PCG and PRO
coincide when the phenotypic mean is 0 (e.g., when

and ).m p 0 p p q
In the regression analyses, all sib pairs are used, and

the transformed phenotype is regressed on IBD sharing
status. In actual data analysis, usually will not be de-xp

termined unambiguously, and will be replaced by itsxp

expected value or its probability distribution given the
markers.

Residual Ratio a Measure of Detection Power

The regression model may also be considered as a one-
way analysis of variance, with the dependent variable
observed for three separate groups of sib pairs, corre-
sponding to IBD 0, 1, or 2. Use of the analysis of variance
(ANOVA) entails a slight loss in power compared with
the regression approach, because the latter uses the fact
that the dependent variable for the IBD 1 group should
be intermediate to that of the other two groups. The
model may be rewritten (including residual term) as

y p n � t � e ,k(p) p k(p)

where is the overall mean ofn p E(y ) p � f E[y ]k p p k(p)

, and is the frequency of sib pairs sharing alleles,y f pk p

is the effect of IBD value on the de-t p E[y ] � n pp k(p)

pendent variable, and is the residuale p y � E[y ]k(p) k(p) k(p)

effect for the kth sib pair sharing alleles IBD. A usefulp

variance decomposition (McCulloch and Searle 2001, p.
11) can then be applied to the total variance of ,yk

var(y ) p var{E[y ]} � E{var[y ]} ,k k(p) k(p)

where the variance and expectation are taken over the
values of . These correspond essentially to the between-p

group variance and within-group variance (Ott et al.
1993, p. 774), where “group” refers to IBD status. The
between-group variance, denoted by , can be ex-2jb

pressed as

2j p var{E[y ]}b k(p)

2p f t� p p
p

2p f {E[y ] � n} .� p k(p)
p

The within-group variance (or residual variance), de-
noted by , is2jw

2j p E{var[y ]}w k(p)

2p f E[e ]� p k(p)
p

2p f E {y � E[y ]} .( )� p k(p) k(p)
p

For each transformation scheme except PRO, variances
and can be expressed as2 2j jb w

2 4 2 2 4j p c j � c j j � c j ,u u1 a u2 a � u3 �

where u stands for b or w, as appropriate. For PRO, the
variances include additional terms:
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2 4 2 2 4 2 2j p c j � c j j � c j � c m ju u1 a u2 a � u3 � u4 a

2 2 3 2�c m j � c mj � c mj j .u5 � u6 a u7 a �

The coefficients cu. are given in Appendix C. The ex-
pressions above are given for generality. However, for
the between-group variances, the expression reduces to
simply . In other words, for each transfor-2 4j p c jb b1 a

mation scheme, only is nonzero among the coeffi-cb1

cients for , because is due to genetic variation only.2 2j jb b

However, none of the coefficients for is zero, including2jw

several terms involving . This reflects that, in addition2ja

to the true random residual phenotype variation, in-2jw

cludes contributions from genetic variance that are not
recovered or explicitly estimated when IBD status is used
as an independent variable.

The residual ratio is the ratio of residual variance
( ) to the total variance ( ) and is a measure2 2 2 2j j p j � jw t b w

of the relative efficiency of a specific transformation
scheme in detection of the QTL. The residual ratio bears
a one-to-one correspondence with the noncentrality pa-
rameter in the ANOVA F-test (Neter et al. 1985, p. 547).
A smaller residual ratio indicates greater information for
QTL mapping, leading to greater power in detecting the
QTL. For SQD, PCF, and PCG, the residual ratio, de-
noted by , can be written asr

4 2 2 4c j � c j j � c jw1 a w2 a � w3 �2 2r p j /j pw t 4 2 2 4c j � c j j � c jt1 a t2 a � t3 �

2 4c � c f � c fw1 w2 w3p ,2 4c � c f � c ft1 t2 t3

where , and . Alternatively, the re-c p c � c f p j /jt. b. w. � a

sidual ratio can also be written as

cb12 2r p 1 � j /j p 1 � . (1)b t 2 4c � c f � c ft1 t2 t3

For PRO, the residual ratio can be written as

r p 1 �

cb1 ,2 4 2 2 2 2c � c f � c f � c w � c w f � c w � c wft1 t2 t3 t4 t5 t6 t7

(2)

where .w p m/ja

Trends of Residual Ratios of the Transformation
Schemes

To investigate the trends of residual ratios for the four
transformation schemes, we calculated for the fourr

transformation schemes using equations (1) and (2) and
varying several parameters, including the heritability

2 2 2 2h p j /(j � j )a a �

2 2 2p 1/(1 � j /j ) p 1/(1 � f ) ,� a

frequency of allele B, sibship size n, and . All of thew

results are limiting efficiencies for large total number of
sibs N. Of the transformation schemes, only PCF de-
pends on sibship size n, essentially because the marginal
(across families) within-group variances do not depend
on n, and our H-E approaches do not attempt to ex-
plicitly use the within-family phenotype correlations.

The four plots in figure 1 show the residual ratios for
the four transformation schemes under four QTL heri-
tabilities, , .8, .5, and .2. For , all var-2 2h p 1.0 h p 1.0
iation in the phenotypic values is attributable to the
QTL. However, 170% of the total genetic variation is
still distributed as residual variance for any of the trans-
formation schemes, because IBD status can account only
incompletely for phenotype variation. We emphasize
that values approaching 1.0 are very extreme and2h
unlikely to be observed in practice. Also, in such extreme
cases, a likelihood approach would be considerably
more powerful, recognizing the near-perfect correlation
of sibs with IBD 2. For large heritabilities the discreteness
of the two-allele genetic model will also produce some-
what different results than those based on normal ap-
proximations. Thus, in figures 1A and 1B, SQD has a
smaller residual ratio than PCG, despite analytic work
based on normal assumptions that indicates PCG should
be somewhat more powerful than SQD (Wright 1997;
Drigalenko 1998).

Overall, as the heritability decreases, the residual ratio
increases. In fact, when , the residual ratio is near2h p .2
1.0 across the range of allele frequencies, reflecting the
inherently low power of the H-E method under these
situations. The allele frequency p of allele B is another
important factor affecting residual ratios. The lowest
residual ratio is always achieved when the two alleles of
the QTL are equally frequent—that is, when forp p .5
all the four schemes and four heritabilities.

The transformation schemes themselves also play a
role in the magnitudes of residual ratios (fig. 1). No
matter how large the QTL contribution, the orderings
of the residual ratios between PRO and PCG is PRO �
PCG; that is, PCG recovers a larger proportion of genetic
information than PRO. An additional observation is that
PCF always offers an improvement over SQD, except
when and the two schemes are identical. Also,n p 2
the relative rankings between the two sets, {PRO, PCG}
and {SQD, PCF}, depend greatly on the QTL contri-
bution . With a very high QTL contribution (fig. 1A2h
and B), PRO and PCG tend to produce much higher
residual ratios than SQD and PCF for the whole range
of allele frequencies, although, for such high heritabil-
ities, this behavior is highly model-dependent. For mod-
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Figure 1 Residual ratios calculated from the formulas. Plots A, B, C, and D were obtained under , .8, .5, and .2, respectively.2h p 1.0
For PRO, was 0 for all of the plots. For PCG, the grand mean is assumed to be known (i.e., limit as the total number of siblings N approachesw

infinity). The number of siblings per family is denoted by n.

erate or low QTL contribution, smaller residual ratios
for PRO and PCG are observed around the central re-
gion of the range of allele frequencies (fig. 1C and 1D).
As an interesting note, we observe that for , the2h p .2
residual ratio for PCG is approximately twice as far from
1.0 as that for SQD. This corresponds to the limiting
result (Wright 1997) that the squared difference uses
only half of the available linkage information as ap-2h
proaches 0.

As one might expect, the size of sibships (n) has a
great influence on the residual ratio of PCF (fig. 1). For
large values of n, PCF has a lower residual ratio than
does PCG, even when the QTL contribution is moderate
(fig. 1C).

Applications to GAW10 Data and Additional
Simulations

The above results were obtained under the assumption
that all families are of the same size. To examine the
analytic results under more realistic situations with var-
ying family sizes, we applied the four transformation
schemes to analyze the data on trait “Q4” of the Genetic
Analysis Workshop 10 (GAW10) simulated nuclear-fam-
ily data (problem 2A) (MacCluer et al. 1997). All 200
replicates of the simulated data were used, each of which
contains 239 families with an average of 2.87�1.04
siblings per family. Trait “Q4” is controlled by three

unlinked diallelic QTLs located on three of the 10 chro-
mosomes. The three QTLs—MG4, MG5, and MG6—
have phenotypic contributions of 28%, 16%, and 11%,
respectively. There are a total of 367 markers with an
average spacing of 2.03 cM across the genome. There
are no epistatic effects among the QTLs, no differences
in living conditions between families, and no sex or age
effects.

The Hidden Markov model algorithm (Kruglyak and
Lander 1995) was used to compute the distribution of
alleles shared IBD, and the expected values of werexp

used in the regressions. All possible sib pairs of each
family were included and analyzed as independent pairs,
which produces valid linkage tests (Elston et al. 2000)
under the null hypothesis of no linkage. All the analyses
were conducted with our newly developed computer pro-
gram MULTIGENE 1.0 for the PC environment (Win-
dows 95/98/NT). It is freely available from our Web site.

Example Data Set and Average LODs

Figure 2 presents a typical example in which the
schemes are applied to data from replicate 19. Regres-
sion results were converted to LOD-equivalents as

1
LOD p s log (SS /SS ) ,10 R F2
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Figure 2 Replicate 19 of GAW 10 problem 2A shows the results from the four transformation schemes. The triangles show the true
locations of the QTLs.

where SSR is the residual sum of squares from the re-
duced regression model, SSF, the residual sum of squares
from the full regression model, and s is the number of
sib pairs (Johnson and Wichern 1982). When a LOD of
1.8 was considered suggestive linkage (based on the pro-
posals of Lander and Kruglyak [1995]), SQD, PCF, and
PCG exhibited peaks near the locations of MG4 and
MG5. Peaks were also found on chromosome 10 but at
farther distances from the true location of MG6. For
PRO, however, no peak 11.8 was found within 10 cM
of the three QTLs. For MG4 and MG5, the contribu-
tions to the trait are relatively large, and the LOD scores
at the identified peaks obtained with PCF were nearly
twice as high as those obtained with SQD or PCG. MG6
has the smallest contribution to the trait, and the results
from SQD, PCF and PCG were all similar.

The results from replicate 19 reflect a general trend
for the four transformation schemes, which can be seen
in the average LOD values at the three QTL locations
across all 200 replicates. PCF produced the highest LOD
scores (3.23, 1.60, and 1.09 for MG4, MG5, and MG6,
respectively), which were nearly twice as large as those
obtained with SQD (LODs 1.83, 0.72, and 0.49, re-

spectively) or PCG (LODs 1.57, 0.69, and 0.47, respec-
tively). SQD and PCG yielded similar results. PRO al-
ways gave the lowest average LOD values (0.26, 0.23,
and 0.27, respectively). As expected, the phenotypic con-
tributions of the QTLs played an important role in de-
termining the LOD differences among the transforma-
tion schemes; larger QTL contributions corresponded to
larger differences.

Detection Power

Direct comparisons of LOD scores are reasonable in
evaluation of transformation schemes at a single putative
QTL location, because the tests based on the schemes
involve the same number of df. However, the correlation
of successive LOD values across the genome may differ
among the methods (see Lander and Kruglyak 1995), in
ways that are imperfectly understood. Thus, to refine
the comparison of the transformation schemes, we com-
pared the four schemes across all 200 replicates of the
GAW 10 data set. We estimated a separate LOD thresh-
old for each of the transformation schemes by using the
original data and counting as false positives those with
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Figure 3 Results from 1,000 simulations, illustrating the influ-
ence of sibship size on the residual ratio. The sibship sizes varied, but
the total sample size N was fixed at 1,000. IBD values were assumed
to be known for each sib pair. The QTL phenotypic contribution was

with two equally likely alleles, and .2h p .5 m p 0

Table 2

Detection Power with the Four Transformation Schemes

QTL

DETECTION POWER

Suggestive Linkage Significant Linkage

PCF SQD PCG PRO PCF SQD PCG PRO

MG4 .67 .65 .54 .04 .25 .18 .19 .02
MG5 .22 .18 .16 .02 .04 .03 .01 .00
MG6 .07 .10 .13 .06 .00 .00 .00 .01

peaks occurring on a chromosome without a QTL or
those 110 cM from a true QTL location. This is an
approximate approach that has appeared to work well
in our experience (D.W. and F.A.W., unpublished data).

To empirically control the type I error, we set the sug-
gestive linkage level as that producing an average of one
genomewide false positive per genome scan, and the sig-
nificant linkage level as having a rate of .05 genomewide
false positives per scan. Empirical LOD thresholds were
determined from the replicates, with suggestive LODs
1.81, 1.68, 1.64, and 1.65 for PCF, SQD, PCG, and
PRO, respectively. For these same schemes the corre-
sponding significant LOD thresholds were 3.41, 3.49,
3.11, and 2.81. Considering the number of replicates,
these empirical thresholds are (with the exception of the
significant threshold for PRO) reasonably close to those
based on analytic approximations.

The detection powers under these empirical LOD
thresholds are given in table 2. Under both significance
levels, PCF yielded the highest power for MG4 and
MG5, but the power for MG6, the locus that contributes
the least to the trait, was comparable with the other
transformation schemes. PRO was the least powerful,
whereas SQD and PCG had similar power. These results
are quite consistent with our analytic results.

Size of Sibships

Using simulation, we can explore the effect of extreme
sibship sizes on the relative performances of the trans-
formation schemes in the more realistic situation that
sample size N is finite. Figure 3 shows the estimates of
residual ratios (based on application of a one-way
ANOVA) for 1,000 simulations for a QTL with heri-
tability , assuming that the QTL IBD status can2h p .5
be observed directly (i.e., a fully informative marker at
the QTL). The sibship sizes increase from 2 to 100, while
the total number of siblings N remains fixed at 1,000.
Note that, as in the analytic results, the residual ratios
for SQD, PCG, and PRO do not change much over the
range of sibship sizes and even less over the range of
realistic sibship sizes (say, �10). The residual ratio for
PCF, in contrast, drops fairly dramatically at first and
then drops more gradually. There is a limit to the im-
provement offered by PCF, as the family-specific mean

will, for very large sibship sizes n, approach a fixed value
based on the genetic constitution of the parents to the
sibship.

Family-Specific Effects

We have explored how the performances of transfor-
mation schemes depend on several factors, including
QTL contributions, allele frequencies, and size of sibship
(for PCF). What may not be apparent is that our analytic
results represent a worst-case scenario for the relative
performance of PCF, in that up to now we have assumed
no family-specific phenotype effects (e.g., environmental
influences) and no additional QTLs that would contrib-
ute background genetic variation in the phenotype. The
presence of such effects is realistic for complex quanti-
tative traits and will tend to induce phenotype correla-
tion among siblings that is not captured by consideration
of genotypes at the QTL under study. The correction of
phenotypes by family-specific means can correct for
much of this correlation, to the point that, in extreme
cases of familial correlation, the SQD can perform better
than PCG (Palmer et al. 2000).

To study the influences of familial effects, we con-
ducted two different sets of simulations. For both sim-
ulations, the QTL under study has , , and2p p .5 j p 50a

, and we examine a fully informative marker at2j p 50�

the QTL. For the first simulation, we added a normal
random effect N(0, ) to the phenotype of each indi-2jF

vidual in the family as a family-specific environmental
effect, with ranging from 0 to 100. For the second2jF

simulation, we included no such environmental effects
but modified the phenotypes to reflect the effect of an
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Figure 4 Results of 1,000 simulations, illustrating the influence of family-specific effects on residual ratios. The sibship size was n p 4
in all cases, with total sample size . IBD values were obtained unambiguously at the QTL.N p 2,000

additional QTL. This second QTL consisted of two
equally likely alleles, was unlinked to the QTL under
study, and had additive genetic variance ranging from 0
to 100. In each simulation, 1,000 replicates were con-
ducted. In each replicate, 500 nuclear families with four
siblings each were sampled. The residual ratios, r̂ p

, were estimated from the H-E regression model and2 2ˆ ˆj /je t

the average estimated ratios over the 1,000 simulations
are plotted in figure 4. It is apparent that family-specific
environmental effects have a great influence on the re-
sidual ratios of PCG and PRO. However, they have no
influence on SQD and PCF. For these transformation
schemes, family-specific environmental effects cancel in
the differences of pair values and in the corrections with
family means but not in PCG or PRO. In contrast, ge-
netic background influences the residual ratios of all the
four transformation schemes, as only a portion of this
variation is recoverable via phenotype transformation.
However (under a similar principle as with family-spe-
cific environmental effects), in the presence of an addi-
tional QTL, the residual ratio of PCG rises faster than
those of SQD or PCF.

Summary and Future Extensions

The H-E sib-pair QTL regression method and others
reliant on IBD status are fundamentally limited in their
power to detect linkage, as much of the underlying ge-
netic variation is not reflected in IBD status. Nonetheless,
these approaches have considerable appeal, in that they
require few assumptions about the underlying genetic
model. We have explored how the transformation of
sibling phenotypes can greatly affect the power to detect
linkage. Furthermore, the product of sib-pair values cor-
rected by family-specific means (PCF) appears to offer

advantages over a range of realistic conditions. These
advantages are achieved without the need to explicitly
consider the underlying genetic model and involve noth-
ing more complicated than a simple transformation of
phenotype.

The analytic results are supported by analyses using
data from GAW10 and additional simulations. We have
also recently used these four transformation schemes to
analyze simulated data from GAW12, and PCF once
again was found to yield the highest power (Wang et al.
2000). We propose that PCF be considered as an alter-
native transformation scheme of sib-pair values to im-
prove detection power with the H-E method.

Modest further improvements in power are to be ex-
pected from explicit modeling of correlations of phe-
notype for collections of sib pairs within families (Elston
et al. 2000). In addition, our results suggest that im-
provements over PCF might be made by use of a hybrid
approach that corrects by a mean which is likely to be
“most representative” of the mean for that family. For
small sibships, when family-specific effects are not
strong, the PCG may be preferable to PCF (fig. 1D).
Essentially, this results from the fact that a small sibship
may give a poor estimate of the “true” phenotypic mean
for that family, which derives from the parental geno-
types. In such instances, the estimated grand mean may
be preferable. However, as the sibship grows, the esti-
mated family mean gradually forms a better estimate of
the true family mean. These ideas are similar to shrink-
age estimation in mixed-model analysis (McCulloch and
Searle 2001, p. 51), and we are investigating hybrid ap-
proaches that correct by weighted averages of the grand
mean and family mean.
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Appendix A

Product of Sib-Pair Values Corrected by a Constant

We consider the transformation

PCC p (z � c)(z � c) ,1 2

for a single sib pair (the subscript k is suppressed). PRO is the special case of PCC where . We note that thec p 0
overall mean and variance of the phenotype of a randomly selected individual does not depend on IBD status
(denoted by , 1, or 2), orp p 0

E(z Fp) p E(z Fp) p E(Z) p m1 2

and

2var(z Fp) p var(z Fp) p var(Z) p j .1 2

Then

2 2E[(z � c)(z � c)Fp] p E(z z Fp) � cE(z Fp) � cE(z Fp) � c p E(z z Fp) � 2cm � c .1 2 1 2 1 2 1 2

Thus, compared with PRO, PCC produces a constant shift in the expectations of the dependent variable for each
value of p. The overall between-group variance thus will remain constant, regardless of c. However, the total
variance of PCC does depend on c. We have

var[(z � c)(z � c)] p var{[(z � m) � (m � c)][(z � m) � (m � c)]}1 2 1 2

2p var[(z � m)(z � m) � (m � c)(z � m) � (m � c)(z � m) � (m � c) ]1 2 1 2

2 2p var[(z � m)(z � m)] � 2(m � c) j � 2(m � c)cov[(z � m)(z � m),(z � m)]1 2 1 2 1

2�2(m � c)cov[(z � m)(z � m),(z � m)] � 2(m � c) cov[(z � m),(z � m)] ,1 2 2 1 2

so the total variance can be expressed as a quadratic in . The power will maximized for the choice of c thatm � c
minimizes the total variance. The coefficient to the linear term in the equation is proportional to d p cov[(z �1

, noting that, by symmetry of and , d also equals . It is convenientm)(z � m),(z � m)] z z cov[(z � m)(z � m),(z � m)]2 1 1 2 1 2 2

to reexpress the data as . For most models of interest, the joint density f of andx p z � m,x p z � m x x1 1 2 2 1 2

follows a special symmetry, such that . Essentially, this results from the symmetry of andf(x ,x ) p f(�x , � x ) z1 2 1 2 1

and from the fact that marginal densities of and are symmetric about their mean—that is, the medianz z z2 1 2

equals the mean. These properties hold approximately for the model examined in this paper and hold for the
normal models that are often applied in QTL mapping. In real-data analysis, the phenotypes may be skewed, and
it is standard practice to perform normalizing transformations to the data to reduce skew. From these assumptions,
we now show that , which, from the quadratic equation, implies that the total variance is minimized ford p 0

or . We havem � c p 0 c p m



Wang et al.: Transformation Schemes of Sib-Pair Values 1247

2cov[(z � m)(z � m),(z � m)] p E(x x 7 x ) � E(x x )E(x ) p E(x x )1 2 1 1 2 2 1 2 1 1 2

2 2 2p x x f(x ,x )dx dx p x x f(x ,x )dx dx � x x f(x ,x )dx dx�� 1 2 1 2 1 2 � � 1 2 1 2 1 2 � � 1 2 1 2 1 2

! 1X X X X 0 X X 01 2 1 2 1 2

2 2p (�x ) (�x )f(�x , � x )dx dx � x x f(x ,x )dx dx� � 1 2 1 2 1 2 � � 1 2 1 2 1 2

1 1X X 0 X X 01 2 1 2

2 2p x (�x )f(x ,x )dx dx � x x f(x ,x )dx dx p 0 .� � 1 2 1 2 1 2 � � 1 2 1 2 1 2

1 1X X 0 X1 X2 01 2

Appendix B

Conditional Expectations

The expectations conditioning on IBD sharing value for all the four transformation schemes can be expressedp

generally as

E[y ] p f f E[y ] ,� �k(p) F C(F,p) k(F,C)
F C

where F stands for family type ( ,…, 6 corresponding to the six possible joint parental genotypes); is theF p 1 fF
expected frequency of the family type F in the population; C stands for sib pair type ( ,…, 6 for the joint sibC p 1
genotypes); is the frequency of C type of sib pair in the Fth type of family, conditional on IBD value ( ); andf pC(F,p)

is the expectation, given family type F and pair type C, which is independent of . Frequencies andE[y ] p fk(F,C) F

were found under the assumptions of random mating and Hardy-Weinberg equilibrium, and are given in tablefC(F,p)

B1.

Table B1

Frequencies of Family Types (F) and Sib-Pair Types (C)

AND FAMILY TYPEp fF

fC(F,p)

BB-Bb Bb-Bb bb-Bb BB-BB BB-bb bb-bb

0:
BB#Bb 4p3q 1 … … … … …
Bb#Bb 4p2q2 … .5 … … .5 …
bb#Bb 4pq3 … … 1 … … …
BB#BB p4 … … … 1 … …
BB#bb 2p2q2 … 1 … … … …
bb#bb q4 … … … … … 1

1:
BB#Bb 4p3q .5 .25 … .25 … …
Bb#Bb 4p2q2 .5 … .5 … … …
bb#Bb 4pq3 … .25 .5 … … .25
BB#BB p4 … … … 1 … …
BB#bb 2p2q2 … 1 … … … …
bb#bb q4 … … … … … 1

2:
BB#Bb 4p3q … .5 … .5 … …
Bb#Bb 4p2q2 … .5 … .25 … .25
bb#Bb 4pq3 … .5 … … … .5
BB#BB p4 … … … 1 … …
BB#bb 2p2q2 … 1 … … … …
bb#bb q4 … … … … … 1
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NOTE.—Expressions for after Haseman and Elston (1972).fc

The frequencies and are the same for all the schemes, but varies with transformation schemes.f f E[y ]F C(F,p) k(F,C)

For all the schemes except PCF, , implying that the expectations depend only on the geneticE[y ] p E[y ]k(F,C) k(C)

constitution of the sib pair. However, we need to obtain for each type of family for PCF because familyE[y ]k(F,C)

means differ with family types. Full derivations are available at our Web site.

Appendix C

Table C1

Coefficients cui for Variance Components

Transformation
Scheme cui

PCF ,1 4 8 8 4
2 3 4c p (1 � � � � ) c p c p 0b1 b2 b38 n n n n

,1 1 1 1 1 2 2 2
2 3 4 2c p � (1 � 2pq) � (1 � 14pq) � (3 � 8pq) � pq c p c p 1 � �( )w1 w2 w34pq 4 2n 4n 2n n n n

SQD , , ,1 1c p c p c p 0 c p c p c p 8b1 b2 b3 w1 w2 w32 2pq

PCG ,1 4 8 8 4
2 3 4c p (1 � � � � ) c p c p 0b1 b2 b38 N N N N

1 1 1 1 1 1
2 3 4c p (2 � pq) � (�8 � 22pq) � (26 � 106pq) � (�34 � 164pq) � (14 � 72pq)( )w1 4pq 2 N N N N

,7 10 4 2 2
2 3 2c p 2 � � � c p 1 � �w2 w3N N N N N

PRO ,1c p c p c p c p c p c p c p 0b1 b2 b3 b4 b5 b6 b78

, , , , ,3 17 1 4(p�q)c p � c p � 2 c p 1 c p 3 c p 2 c p c pw1 w2 w3 w4 w5 w6 w7 �4pq 8 pq 2pq
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